H(5)=-4.9t^2+49t+100

Simple and best practice solution for H(5)=-4.9t^2+49t+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(5)=-4.9t^2+49t+100 equation:



(5)=-4.9H^2+49H+100
We move all terms to the left:
(5)-(-4.9H^2+49H+100)=0
We get rid of parentheses
4.9H^2-49H-100+5=0
We add all the numbers together, and all the variables
4.9H^2-49H-95=0
a = 4.9; b = -49; c = -95;
Δ = b2-4ac
Δ = -492-4·4.9·(-95)
Δ = 4263
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4263}=\sqrt{49*87}=\sqrt{49}*\sqrt{87}=7\sqrt{87}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-7\sqrt{87}}{2*4.9}=\frac{49-7\sqrt{87}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+7\sqrt{87}}{2*4.9}=\frac{49+7\sqrt{87}}{9.8} $

See similar equations:

| 24/17=162/x | | 10=(-(2/3))(4x+5) | | 10=-(2/3)(4x+5) | | x4–x=0 | | 3/x+1-1/x-1=3x/×-1*×+1 | | -5x=20x | | -1+x^2+2x=0 | | 1.5x-0.66x=2 | | 2g+g+(2g+5)=100 | | 5^4x-3=0.5 | | 2g+g+(2g/5)=100 | | (5u+1)(8-u)=0 | | -9x^2-7=-155 | | 2w+17=4w-25 | | (11x/270)=1 | | 0.09x=1 | | (x/2)+(x)+(x/5)=100 | | (x/2)+x+(x/5)=100 | | 13(t-4)+5t=6(3t+2)-10 | | 0.2(x+100)+0.8x=45 | | 0.07z=-21 | | 4(y-1)+5(y-2)=3(y-8) | | -6x-7=19 | | w2+4w+-26=0 | | 4q+20/5+8=4 | | 3/2v=6/5 | | 9z2+29=36z | | V=1/3π^2h | | 4(x-2)+4x=8 | | 5x-1=#(x+11) | | 6x^2-280x=0 | | F(x)=3^3-2 |

Equations solver categories